Resposta de Freqüência do Filtro de Média Corrente A resposta de freqüência de um sistema LTI é a DTFT da resposta de impulso, A resposta de impulso de uma média móvel de L é de média móvel. Uma vez que o filtro de média móvel é FIR, a resposta de freqüência reduz-se à soma finita We Pode usar a identidade muito útil para escrever a resposta de freqüência como onde temos deixar ae menos jomega. N 0 e M L menos 1. Podemos estar interessados na magnitude desta função para determinar quais freqüências passam pelo filtro sem atenuação e quais são atenuadas. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianos por amostra. Observe que, em todos os três casos, a resposta de freqüência tem uma característica de passagem baixa. Uma componente constante (frequência zero) na entrada passa através do filtro sem ser atenuada. Determinadas frequências mais elevadas, tais como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro lowpass, então não temos feito muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. O gráfico acima foi criado pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-iomega4)) (1-exp (-iomega)) H8 (18) (1-exp (- (1-exp (-iomega)) (1-exp (-iomega)) traço (omega, abs (H4) abs (H8) abs ( H16)) (0, pi, 0, 1) Copiar Copyright 2000- - Universidade da Califórnia, BerkeleyResposta de frequência do filtro de média móvel e do filtro FIR Compare a resposta em frequência do filtro de média móvel com a do filtro FIR regular. Defina os coeficientes do filtro FIR regular como uma seqüência de 1s escalado. O fator de escala é 1filterLength. Crie um objeto de sistema dsp. FIRFilter e defina seus coeficientes para 140. Para calcular a média móvel, crie um objeto System dsp. MovingAverage com uma janela deslizante de comprimento 40 para calcular a média móvel. Ambos os filtros têm os mesmos coeficientes. A entrada é Gaussian ruído branco com uma média de 0 e um desvio padrão de 1. Visualize a resposta de freqüência de ambos os filtros usando fvtool. As respostas de freqüência correspondem exatamente, o que prova que o filtro de média móvel é um caso especial do filtro FIR. Para comparação, veja a resposta de freqüência do filtro sem ruído. Compare a resposta de freqüência dos filtros com a do filtro ideal. Você pode ver que o lobo principal na faixa de passagem não é plano e as ondulações na banda de parada não são restritas. A resposta de frequência dos filtros de média móvel não corresponde à resposta em frequência do filtro ideal. Para realizar um filtro FIR ideal, altere os coeficientes de filtro para um vetor que não seja uma seqüência de 1s escalado. A resposta de freqüência do filtro muda e tende a se aproximar da resposta do filtro ideal. Desenhe os coeficientes do filtro com base em especificações de filtro predefinidas. Por exemplo, projete um filtro FIR equiripple com uma freqüência de corte normalizada de 0,1, uma ondulação de banda passante de 0,5 e uma atenuação de banda de interrupção de 40 dB. Use fdesign. lowpass para definir as especificações do filtro eo método de design para projetar o filtro. A resposta dos filtros na banda de acesso é quase plana (semelhante à resposta ideal) e a banda de interrupção tem efeitos limitados. MATLAB e Simulink são marcas registradas da The MathWorks, Inc. Consulte mathworkstrademarks para obter uma lista de outras marcas comerciais de propriedade da The MathWorks, Inc. Outros produtos ou marcas são marcas comerciais ou marcas registradas de seus respectivos proprietários. Selecione seu Filtro Médio de Filtragem (Filtro MA) Carregando. O filtro de média móvel é um filtro simples Low Pass FIR (Finite Impulse Response) comumente usado para suavizar uma matriz de datasign amostrada. Ele toma M amostras de entrada de cada vez e pegue a média dessas M-amostras e produz um único ponto de saída. É uma estrutura de LPF (Low Pass Filter) muito simples que vem à mão para cientistas e engenheiros para filtrar componentes indesejados ruidosos dos dados pretendidos. À medida que o comprimento do filtro aumenta (o parâmetro M) a lisura da saída aumenta, enquanto que as transições nítidas nos dados são tornadas cada vez mais sem corte. Isto implica que este filtro tem uma excelente resposta no domínio do tempo mas uma resposta de frequência pobre. O filtro MA executa três funções importantes: 1) Toma M pontos de entrada, calcula a média desses pontos M e produz um único ponto de saída 2) Devido aos cálculos computacionais envolvidos. O filtro introduz uma quantidade definida de atraso 3) O filtro age como um Filtro de Passagem Baixa (com fraca resposta de domínio de freqüência e uma boa resposta de domínio de tempo). Código Matlab: O código matlab seguinte simula a resposta no domínio do tempo de um filtro M-point Moving Average e também traça a resposta de freqüência para vários comprimentos de filtro. Time Domain Response: No primeiro gráfico, temos a entrada que está entrando no filtro de média móvel. A entrada é ruidosa e nosso objetivo é reduzir o ruído. A figura seguinte é a resposta de saída de um filtro de média móvel de 3 pontos. Pode-se deduzir da figura que o filtro de média móvel de 3 pontos não fez muito na filtragem do ruído. Nós aumentamos as torneiras de filtro para 51 pontos e podemos ver que o ruído na saída reduziu muito, o que é descrito na próxima figura. Nós aumentamos as derivações para 101 e 501 e podemos observar que mesmo que o ruído seja quase zero, as transições são drasticamente apagadas (observe a inclinação em ambos os lados do sinal e compare-as com a transição ideal da parede de tijolo em Nossa entrada). Resposta de Freqüência: A partir da resposta de freqüência pode-se afirmar que o roll-off é muito lento ea atenuação da banda de parada não é boa. Dada esta atenuação de banda de parada, claramente, o filtro de média móvel não pode separar uma banda de freqüências de outra. Como sabemos, um bom desempenho no domínio do tempo resulta em fraco desempenho no domínio da freqüência e vice-versa. Em suma, a média móvel é um filtro de suavização excepcionalmente bom (a ação no domínio do tempo), mas um filtro de passa-baixa excepcionalmente ruim (a ação no domínio da freqüência) Links externos: Livros recomendados: Primary SidebarDocumentation As respostas de freqüência correspondem exatamente , O que prova que o filtro de média móvel é um caso especial do filtro FIR. Para comparação, veja a resposta de freqüência do filtro sem ruído. Compare a resposta de freqüência dos filtros com a do filtro ideal. Você pode ver que o lobo principal na faixa de passagem não é plano e as ondulações na banda de parada não são restritas. A resposta de frequência dos filtros de média móvel não corresponde à resposta em frequência do filtro ideal. Para realizar um filtro FIR ideal, altere os coeficientes de filtro para um vetor que não seja uma seqüência de 1s escalado. A resposta de freqüência do filtro muda e tende a se aproximar da resposta do filtro ideal. Desenhe os coeficientes do filtro com base em especificações de filtro predefinidas. Por exemplo, projete um filtro FIR equiripple com uma freqüência de corte normalizada de 0,1, uma ondulação de banda passante de 0,5 e uma atenuação de banda de interrupção de 40 dB. Use fdesign. lowpass para definir as especificações do filtro eo método de design para projetar o filtro. A resposta dos filtros na banda de acesso é quase plana (semelhante à resposta ideal) e a banda de interrupção tem efeitos limitados. Mais sobre Selecione seu país
No comments:
Post a Comment